Nanoscale imaging with resonant coherent X rays: extension of multiple-wavelength anomalous diffraction to nonperiodic structures.
نویسندگان
چکیده
The methodology of multiple-wavelength anomalous diffraction, widely used for macromolecular structure determination, is extended to the imaging of nonperiodic nanostructures. We demonstrate the solution of the phase problem by a combination of two resonantly recorded coherent scattering patterns at the carbon K edge (285 eV). Our approach merges iterative phase retrieval and x-ray holography approaches, yielding unique and rapid reconstructions. The element, chemical, and magnetic state specificity of our method further renders it widely applicable to a broad range of nanostructures, providing a spatial resolution that is limited, in principle, by wavelength only.
منابع مشابه
Nanoscale femtosecond imaging of transient hot solid density plasmas with elemental and charge state sensitivity using resonant coherent diffraction
Here we propose to exploit the low energy bandwidth, small wavelength and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominat...
متن کاملAnalytic 3D imaging of mammalian nucleus at nanoscale using coherent x-rays and optical fluorescence microscopy.
Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear subs...
متن کاملLensless MAD Imaging of Nonperiodic Nanostructures
Figure 1: MAD imaging setup: The sample (SEM image) is illuminated with a monochromatized and spatially coherent source (red). MAD phasing exploits the energy-dependent interference of the resonant exit wave (red) with the nonresonant exit wave (blue). The interference patterns recorded with a CCD detector reveal notable changes in vicinity of the carbon K edge. The exposure times were in the r...
متن کاملHigh-resolution ab initio three-dimensional x-ray diffraction microscopy.
Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-...
متن کاملSelenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 7 شماره
صفحات -
تاریخ انتشار 2008